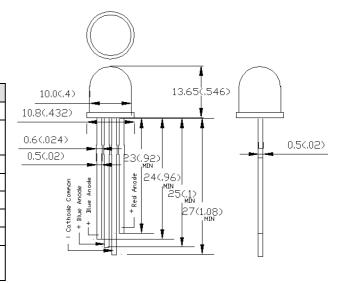
Full Color TYPE LED


Package Dimensions

Features

- High intensity
- Wide viewing angle
- General purpose leads
- Reliable and rugged

Absolute Maximum Ratings at Ta=25

Absolute Maximum Ratings at Ta=25						
Parameter	Max.	Unit				
Power Dissipation	100	mW				
Peak Forward Current	100	mA				
(1/10 Duty Cycle, 0.1ms Pulse Width)	100	mA				
Continuous Forward Current	40	mA				
Derating Linear From 50	0.4	mA /				
Reverse Voltage	5	V				
Operating Temperature Range	-40 to +80					
Storage Temperature Range	-40 to +80					
Lead Soldering Temperature	260 for 5.0	`aaanda				
[4mm(.157") From Body]	260 for 5 S	Seconds				

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Protruded resin under flange is 1.0mm (.04") max.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

Unit: mm (inches)

Tolerance: ±0.25mm (.010") max

Part No.	Emitting Color	Lens Color	Peak Wavelength λp (nm)	Vf (V) I _f = 20mA (Note E1)	Iv (mcd) (Note E2)	Viewing Angle 2θ _{1/2} (Deg) (Note E3)
				Min Typ	Min Typ	
EL-10RGB252	Ultra-Red	Water Clear	645	1.6 – 2.0	1000 – 1300	45
	Ultra -Green		520	2.8 – 3.6	1500 – 1900	40
	Ultra-Blue		460	2.8 – 3.6	850 – 1100	40
EL-10RGB454	Ultra-Red	White Diffused	645	1.6 – 2.0	400 – 550	70
	Ultra -Green		518	2.8 – 3.6	700 – 1000	70
	Ultra-Blue		460	2.8 - 3.6	600 – 750	70

Parameter Test Condition

Luminous Intensity I_f = 20mA (Note E1. Luminous intensity is measured with a light sensor and filter combination that approximates

the CIE eye-response curve.)

Dominant Wavelength $I_f = 20 \text{mA}$ (Note E2: The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents

the single wavelength which defines the color of the device.)

Peak Emission Wavelength $I_f = 20 \text{mA}$

Viewing Angle (Note E3. 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.)

 $\label{eq:spectral Line Half-Width} \begin{array}{ll} \text{Spectral Line Half-Width} & \text{I}_f = 20\text{mA} \\ \text{Forward Voltage} & \text{I}_f = 20\text{mA} \\ \text{Reverse Current} & \text{I}_f = 20\text{mA} \end{array}$