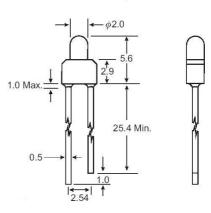


ROUND-TOWER TYPE LED

Features


- High intensity
- Wide viewing angle
- General purpose leads
- Reliable and rugged

Absolute Maximum Ratings at Ta=25℃

Parameter	Max.	Unit		
Power Dissipation	100	mW		
Peak Forward Current	100	mA		
(1/10 Duty Cycle, 0.1ms Pulse Width)	100			
Continuous Forward Current	40	mA		
Derating Linear From 50 $^\circ\!\!\mathbb{C}$	0.4	mA / °C		
Reverse Voltage	5	V		
Operating Temperature Range	-40° ℃ to +80° ℃			
Storage Temperature Range	-40°C to +80°C			
Lead Soldering Temperature [4mm(.157") From Body]	260 $^\circ\!\!\mathbb{C}$ for 5 Seconds			
Notes:				

Unit: mm (inches) Tolerance: ± 0.25mm (.010") max.

2. Protruded resin under flange is 1.0mm (.04") max.

All dimensions are in millimeters (inches).

3. Lead spacing is measured where the leads emerge from the package.

4. Specifications are subject to change without notice.

Part No.	Emitting Color	Lens Color	Peak Wavelength λp (nm)	Vf (V) I _f = 20mA (Note E1)		lv (n (Note	•	Viewing Angle 2 <i>θ</i> _{1/2} (Deg) (Note E3)
				Min	Тур	Min	Тур	
EL-2R56X31	Hi-Red	Red Diffused	660	1.7 -	2.0	32 -	- 55	130
EL-2G56X31	Hi-Green	Green Diffused	570	1.7 -	2.2	22 -	- 40	130
EL-2Y56X31	Hi-Yellow	Yellow Diffused	590	1.7 -	2.0	25 -	- 45	130
EL-2O56X31	Hi-Orange	Orange Diffused	610	1.7 -	2.2	30 -	- 50	130

Parameter

1.

Luminous Intensity

Dominant Wavelength

Test Condition

I_f = 20mA (Note E1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.)

 I_f = 20mA (Note E2: The dominant wavelength (λ d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.) I_f = 20mA

Peak Emission Wavelength Viewing Angle Spectral Line Half-Width Forward Voltage Reverse Current

(Note E3. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.)

I_f = 20mA

I_f = 20mA I_f = 20mA