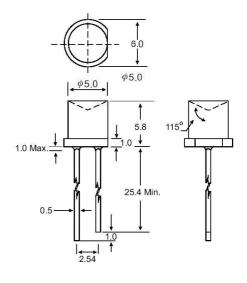
CYLINDRICAL TYPE LED

Features

- High intensity
- Wide viewing angle
- General purpose leads
- Reliable and rugged


Absolute Maximum Ratings at Ta=25

Absolute maximum Rutings at 14-20							
Parameter	Max.	Unit					
Power Dissipation	100	mW					
Peak Forward Current	100	mA					
(1/10 Duty Cycle, 0.1ms Pulse Width)	100						
Continuous Forward Current	40	mA					
Derating Linear From 50	0.4	mA /					
Reverse Voltage	5	V					
Operating Temperature Range	-40 to +80						
Storage Temperature Range	-40 to +80						
Lead Soldering Temperature	260 for 5 Seconds						
[4mm(.157") From Body]							

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Protruded resin under flange is 1.0mm (.04") max.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

Package Dimensions

Unit: mm (inches)

Tolerance: ±0.25mm (.010") max

Part No.	Emitting Color	Lens Color	Peak Wavelength λp (nm)	Vf (V) I _f = 20mA (Note E1)	Iv (mcd) (Note E2)	Viewing Angle $2\theta_{1/2}$ (Deg) (Note E3)
				Min Typ	Min Typ	
EL-5RX52	Ultra-Red	Water Clear	645	1.6 – 1.8	1100 – 2300	160
EL-5GX52	Ultra-Green	Water Clear	568	1.7 – 2.2	400 – 1100	160
EL-5YX52	Ultra-Yellow	Water Clear	590	1.7 – 2.0	800 – 1800	160
EL-5RX53	Ultra-Red	Red Transparent	645	1.6 – 1.8	1100 – 2300	160
EL-5GX53	Ultra-Green	Green Transparent	568	1.7 – 2.2	400 – 1000	160
EL-5YX53	Ultra-Yellow	Yellow Transparent	590	1.7 – 2.0	800 – 1800	160

Parameter Test Condition

Luminous Intensity $I_f = 20$ mA (Note E1. Luminous intensity is measured with a light sensor and filter combination that approximates

the CIE eye-response curve.)

Dominant Wavelength $I_f = 20 \text{mA}$ (Note E2: The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents

the single wavelength which defines the color of the device.)

Peak Emission Wavelength $I_f = 20 \text{mA}$

Viewing Angle (Note E3. 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.)

 $\label{eq:spectral Line Half-Width} \begin{array}{ll} Spectral Line Half-Width & I_f = 20mA \\ Forward Voltage & I_f = 20mA \\ Reverse Current & I_f = 20mA \end{array}$